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Abstract
We investigate the critical behaviour of the two-dimensional Ising model
defined on a curved surface with a constant negative curvature. Finite-size
scaling analysis reveals that the critical exponents for the zero-field magnetic
susceptibility and the correlation length deviate from those for the Ising lattice
model on a flat plane. Furthermore, when reducing the effects of boundary
spins, the values of the critical exponents tend to those derived from the mean
field theory. These findings evidence that the underlying geometric character
is responsible for the critical properties of the Ising model when the lattice is
embedded on negatively curved surfaces.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Fr, 75.40.Cx

1. Introduction

Scaling concept plays a vital role in describing critical phenomena associated with a second-
order phase transition. The fundamental hypothesis states that, in the vicinity of a critical
point, the largest length scale of the fluctuation of the order parameter diverges and all length
scales contribute with equal importance [1, 2]. Theoretical arguments based on this hypothesis
explain why most thermodynamic quantities near the critical point exhibit power-law behaviour
with characteristic exponents that are independent of the microscopic details of a system [3–5].

A primary example of a physical model exhibiting a second-order phase transition is the
two-dimensional Ising model with ferromagnetic interaction [6–8]. This model has been used
extensively for innumerable projects in statistical physics, mainly due to its simplicity and
broad applicability to real systems. Whereas its physical properties have been thoroughly
investigated, it still continues to raise interesting issues that are relevant to a wide range of
critical phenomena. Most intriguing among them is the critical properties of the Ising model
defined on curved geometry [9–15]. In fact, several studies have been carried out on Ising
lattice models with topologies ranging from a torus [6, 9, 16], and sphere [10–14] to genus
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two curved surfaces [15], as well as those with Brascamp–Kunz boundary conditions [17, 18].
The results of these studies are consistent with the fact that an alteration in the topology or
the boundary condition of the Ising lattice does not change its scaling behaviour, and thus the
system remains in the flat-space Onsager universality class [6].

The objective of the current study is to focus on an alternative property of curved
geometries—surface curvature—instead of their topology. Our main concern is whether a
uniform change in the constant surface curvature affects the scaling behaviour of the mounted
Ising lattice model. It should be noted that in most systems considered thus far, the magnitude
of the surface curvature is spatially concentrated on a portion of the surface, even producing a
conical singularity. This inhomogeneous distribution of local curvature would possibly make
it difficult to distinguish the effect of curvature from among other incidental contributions
on the critical properties. In addition, when a surface has a closed form (e.g., a sphere),
its ability to attain the thermodynamic limit with a constant surface curvature is disabled1.
This limitation can be removed successfully by employing a surface with a constant negative
curvature. This surface, in which the Gaussian curvature possesses a finite constant value at
arbitrary points, is simply connected and infinite [19, 20]. Hence, such a surface can serve
as an example for considering the geometric effects on the critical properties of the mounted
system.

In the present paper, we investigate the critical behaviour of the two-dimensional Ising
lattice model defined on a curved surface with a constant negative curvature. Monte Carlo (MC)
simulations and finite-size scaling analyses are employed to compute the critical exponent γ

for the zero-field magnetic susceptibility and µ for the correlation volume. We demonstrate
that the values of both γ and µ deviate from those for the planar Ising lattice model, which
indicates the relevance of the intrinsic geometry of the underlying surface to the critical
properties of the mounted Ising model. Moreover, when reducing the boundary contributions,
the values of γ and µ exhibit a tendency to shift to those derived from the mean-field
approximation. This non-trivial behaviour of the critical exponents is qualitatively consistent
with the conclusion based on the series expansion analyses [21] and that deduced from the
quantum field theory [22]. We also calculate the fourth-order Binder’s cumulant that provides
a check of the results of finite-size scaling.

2. Scaling arguments for the Ising model

Let us briefly review the framework of the scaling argument that successfully explains the
critical properties of the two-dimensional planar Ising lattice model [3]. The scaling hypothesis
states that, in the vicinity of the critical temperature Tc, the singular part of the free energy fs

of the Ising lattice per site should be a homogeneous function:

λdfs(t, h) = fs(λ
xt, λyh), (1)

where t = (T − Tc)/Tc, h = H/(kBT ) and H represents an external magnetic field. The
parameter λd with a spatial dimension d indicates the rescaling of the total number of sites
from N to λdN ; this results from the transformation of the linear dimension of the entire Ising
lattice: L → λL. By eliminating λ from (1), we obtain the scaling relation of fs:

fs (t, h) = |t |d/x F
(

h

|t |y/x

)
, (2)

where F is a universal scaling function. The appropriate differentiation of (2) yields
the power-law form of thermodynamic quantities such as the zero-field susceptibility
1 For example, a sphere reduces to a flat plane at some point within the thermodynamic limit where the effect of
curvature is absent.
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χ ≡ ∂2fs/∂h2 ∝ |t |−γ , where the critical exponents are expressed as functions of x and
y (for instance, γ = (2y − d)/x).

Equation (1) is justified when the Ising lattice is defined on a flat plane, since the rescaling
of L by λ is equivalent to that of N by λd . However, this is not the case when the Ising lattice is
defined on a curved surface; while a wide range of regular lattices can be constructed on curved
surfaces with a constant Gaussian curvature [19, 20], the relation N = Ld becomes invalid
for these lattices due to the differences in the metric of the underlying geometry. Hence, the
rescaling L → λL does not imply N → λdN , which requires some modifications of (1).2

We thus introduce an alternative rescaling parameter � for considering the scaling relation
of the Ising model on curved surfaces:

�fs(t, h) = fs(�
x̃t,�ỹh), (3)

where � represents the rescaling of total sites N → �N . When the underlying geometry
of the lattice is flat, relation (3) reduces to (1) since � = λd . In this case, the parameters x̃

and ỹ given in (3) are defined as x̃ = x/d and ỹ = y/d, thus yielding identical values of
critical exponents (for instance, γ̃ = (2ỹ − 1)/x̃ = (2y − d)/x = γ ). In contrast, when the
underlying geometry is curved, � can no longer be expressed as a power of λ; thus, x̃ and
ỹ are not related to x and y. Consequently, the critical exponents for the latter model, which
are determined by x̃ and ỹ, may quantitatively differ from those for the planar Ising lattice.
This naturally motivates us to evaluate the critical exponent directly by constructing the Ising
lattice model on curved surfaces.

3. Regular tessellation of curved surfaces

A simple spherical surface seems to be the optimal geometry to consider the curvature effect
on the critical properties of the Ising model. In fact, a number of efforts have been preformed
on the Ising model with lattices whose topology is equivalent to a spherical surface [10–14].
It is noted that, however, the thermodynamic limit cannot be considered for the closed form of
sphere-like surfaces having positive curvature while maintaining their finite curvature. This
is because a spherical surface reduces to a flat plane in this limit, where the curvature effect
vanishes completely.

Therefore, instead of a sphere, we consider a curved surface with a negative constant
curvature, termed a pseudosphere [19, 20]. The pseudosphere is a simply connected infinite
surface in which the Gaussian curvature at arbitrary points possesses a constant negative
value. (The definition of the pseudosphere will be given in the appendix.) Hence, it serves as
a suitable geometry for considering the curvature effect on the critical properties of a system.
It should be noted that the pseudosphere occurs in manifold physical problems ranging from
quantum Hall effects [24–28], quantum chaos [29–31], the string theory [32] to cosmology
[33], wherein the underlying geometric character of the system is extremely significant.

Interestingly, a wide range of regular lattices can be constructed on the pseudosphere
[20]. This is achieved by a tessellation procedure, where the entire surface is covered by
non-overlapping regular polygons meeting only along complete edges or at vertices. It is
known that a regular tessellation of the pseudosphere with q regular p-sided polygons meeting
at each vertex satisfies the following property [20]:

(p − 2)(q − 2) > 4. (4)

Hence, the series of integer sets {p, q} satisfying (4) results in an infinite number of possible
regular tessellations of a pseudosphere. This is in contrast to the case of a flat plane, where

2 Similar argument has been made regarding an infinitely coordinated Ising model; see [23].
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Figure 1. Schematic illustration of a regular heptagonal lattice in terms of the Poincaré disc
representation. The number of concentric layers of heptagons is r = 3 in this figure. All heptagons
depicted within the circle are congruent with respect to the metric given in equation (A.3). The
circumference corresponds to an infinite distance from the centre of the circle.

only three regular tessellations are allowed: {p, q} = {3, 6}, {4, 4} and {6, 3} satisfying the
condition (p − 2)(q − 2) = 4. For simplicity, we adopted a heptagonal {7, 3} tessellation to
construct the Ising lattice on a pseudosphere. Figure 1 illustrates the local bond structure of
a regular heptagonal lattice in terms of the Poincaré disc representation. The resulting lattice
comprises concentric layers of congruent heptagons surrounding a central heptagon. The
Ising lattice models embedded on a pseudosphere have been considered thus far [21, 34, 35];
however, explicit temperature dependences of thermodynamics quantities close to the transition
are yet to be concerned.

Due to a peculiar metric of a pseudosphere, the total number of sites N of our heptagonal
lattice exhibits a non-trivial evolution behaviour with the increase in the lattice size. The size
of our lattice is determined by the number of concentric layers of heptagons, denoted by r,
which effectively serves as a linear dimension in our lattice. For a given r, the total number of
sites N is expressed as follows:

N(r = 1) = 7,

N(r � 2) = 7 + 7
r−2∑
j=0

[
c+

(
1 + c+

2

)j

+ c−

(
1 + c−

2

)j
]

,
(5)

where c± = 2 ± √
5. Figure 2 plots the dependence of N on the effective linear dimension r.

When r � 1, it is approximated as N(r) � 5 exp(r); this means that N rapidly increases with
r in comparison with the case of the planar Ising model. The exponential increase in N(r) is
a manifestation of the constant negative curvature of the underlying geometry of our lattice.

It should be noted that, when considering thermodynamic properties of our lattice, careful
treatments on boundary effects are required. The exponential increase in N(r) results in that
the ratio [N(r)−N(r −1)]/N(r) approaches a non-zero constant 1−e−1 in the limit r → ∞.
This means that the boundaries of our lattices cannot be neglected even in the thermodynamic
limit, but contain a finite fraction of the total sites. Boundary effects coming from these sites
are difficult to be eliminated completely, because the periodic boundary conditions are hard to
be employed to regular lattices assigned on a pseudosphere.

In order to extract the bulk critical phenomena, therefore, we have followed the procedure
mentioned below. Suppose that an Ising lattice consists of rout concentric layers of heptagons.
Then, for computing physical quantities of the system (magnetic susceptibilities, for instance),
we take into account only the Ising spins involved in the interior rin layers (rin � rout) so as
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Figure 2. Total number of sites N involved in the heptagonal lattice with various system sizes. The
horizontal axis represents the number of concentric layers of heptagons, r; this effectively serves
as the linear dimension of the entire lattice. Inset: a single logarithm plot of the identical data
shown in figure 2. It is clearly seen that N for r � 1 increases exponentially with r.

to reduce the contribution of the spins locating near the boundary. In actual calculations, rin

is varied from 4 to 8, and for each rin the number of disregarded layers �r ≡ rout − rin is
systematically increased from 0 to 4. By investigating the asymptotic behaviour of the system
for large �r , we can deduce the bulk properties of the Ising lattice model embedded on the
pseudosphere.

4. Numerical methods

We considered the conventional Ising model with ferromagnetic interaction:

H = −J
∑
〈i,j〉

sisj , si = ±1, (6)

where 〈i, j 〉 denotes a pair of nearest-neighbour sites on a heptagonal lattice. The free
boundary condition is imposed for all lattices to be considered. Temperatures and energies
are expressed as units of J/kB and J , respectively. The order parameter m per site for a given
configuration of {si} is given by m = ∑N

i=1 si

/
N .

Our main objective is to determine the zero-field magnetic susceptibility χ that exhibits
the power-law relation χ(T ) ∝ |T −Tc|−γ near the critical temperature Tc. The susceptibility
for a finite system size can be expressed as a function of the order parameter m as

χ(T ,N) = N〈m2〉
kBT

, (7)

or alternatively,

χ ′(T ,N) = N
〈m2〉 − 〈|m|〉2

kBT
. (8)

Despite the difference in their definitions, both χ and χ ′ yield the same critical exponent
γ by the finite-size scaling method, as described in [36]. The expectation values 〈|m|〉 and
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(b)(a)

Figure 3. Zero-field magnetic susceptibilities: (a) χ(T ,N) and (b) χ ′(T , N), for entire heptagonal
lattices with �r = 0. The system size is varied from rin = 4 (square) to rin = 8 (solid circle),
which corresponds to the change in the number of total sites from N = 315 to N = 15 435.

〈m2〉 at temperature T are evaluated by canonical MC simulations [36, 37]. Sampling of the
configurational space was carried out by using the single-cluster update algorithm [38] which
prevents the critical slowing down near the transition.

Quantitative evaluation of critical exponents can be achieved by using the finite-size
scaling technique [39–41]. Close to the critical temperature Tc, the susceptibility for a finite
system size satisfies the following scaling behaviour:

χ(T ,N) ∝ Nγ/µ · χ0(|T − Tc|N1/µ). (9)

Here, µ is the critical exponent describing the divergence of the correlation volume ξV(T ) of
the order parameter:

ξV(T ) ∝ |T − Tc|−µ. (10)

The quantity ξV is a natural generalization [23, 42] of the correlation length ξ that diverges as
ξ(T ) ∝ |T − Tc|−ν with the critical exponent ν in the planar model. Near Tc, the argument
of the scaling functions χ0 in (9), denoted by x = |T − Tc|N1/µ, becomes much smaller than
unity. This allows the polynomial expansion of the scaling function χ0 as

χ(T ,N) = a0N
γ/µ + a1|T − Tc|N(1+γ )/µ + · · · + an|T − Tc|N(n+γ )/µ, (11)

terminating the expansion at the order n. By substituting the numerical data of χ(T ,N)

and their corresponding values of T and N into (11), followed by performing the nonlinear
least-squares fitting, we obtain the critical exponents γ and µ and the critical temperature Tc

as optimal fitting parameters.

5. Results

5.1. Susceptibilities and critical exponents for �r = 0

Before addressing the bulk critical properties, we first demonstrate the results for entire
heptagonal lattices with �r = 0 (boundary contributions are fully involved). Figures 3(a)
and (b) show the calculated results of the zero-field susceptibilities χ(T ,N) and χ ′(T ,N),
respectively, as a function of temperature T. The single logarithmic plot is used in figure 3(a).
The system size r = rin is varied from 4 to 8, which corresponds to the change in the number
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(a) (b)

Figure 4. (a) Scaling plot of χ(T ,N) against the argument x = |T −Tc|N1/µ. The optimal values
of critical exponents are γ = 2.28(2) and µ = 3.46(1), and γ = 2.26(2) and µ = 3.47(1) for the
upper and lower branches, respectively. The critical temperature is estimated as Tc = 1.253(1) for
the two branches. (b) Scaling attempts of χ against the alternative argument y = |T − Tc|r1/µ′

instead of x. Optimal values of the parameters are γ ′ = 1.8(3), µ′ = 2.0(4) and Tc = 1.46(4).

of total sites from N = 315 to N = 15 435. Both χ and χ ′ exhibit such a typical behaviour
that indicates the occurrence of a ferromagnetic transition within the temperature range of
1.1 � T � 1.3. For instance, the χ curve in figure 3(a) monotonically increases with a
decrease in T; this is attributed to the onset of the ordered phase. As well, the plot of χ ′ in
figure 3(b) exhibits a sharp peak at T ∼ 1.2, which is also a precursor of the divergence in the
infinite system.

Figure 4(a) shows the scaling plot of χ(T ,N) based on (9). The vertical and horizontal
axes represent the scaled susceptibility χ(x)N−γ /µ and its argument x ≡ |T − Tc|N1/µ,
respectively. The critical exponents evaluated from the upper and lower branches are
γ = 2.28(2) and µ = 3.46(1), and γ = 2.26(2) and µ = 3.47(1), respectively. The
errors in the last decimal places, which are shown in parentheses, designate a 95% confidence
interval. As expected, the estimated values of γ and µ for the two branches are in agreement
within numerical errors. The optimal value of the critical temperature for the two branches
is evaluated as Tc = 1.253(1); this agrees with the preceding estimation from the values of
figures 3(a) and (b). A similar analysis for χ ′ results in γ = 2.26(3), µ = 3.45(2) and
Tc = 1.254(2); these values are fully consistent with the results deduced from the data of χ .

We re-emphasize the fact that for regular Ising lattices embedded on curved surfaces,
N instead of r should be adopted as the scaling variable. This is justified by attempting
the finite-size scaling of χ using r. Figure 4(b) presents the scaling plot of χ in terms of
another scaling argument y = |T − Tc|r1/µ′

; the estimated values of the parameters are
γ ′ = 1.8(3), µ′ = 2.0(4) and Tc = 1.46(4). It is evident that the data points do not collapse
onto a single curve, but instead exhibit a large scatter. Furthermore, the resulting value of
Tc differs from the temperature at which the susceptibility χ ′(T ) exhibits a sharp peak (see
figure 3). These facts indicate that the linear dimension r is not a characteristic length scale
that describes the scaling behaviour of the thermodynamic quantities for curved surfaces.

5.2. Critical exponents for �r > 0: boundary effects

We now turn to the study of bulk critical properties of the heptagonal Ising lattice model. As
mentioned in section 3, the boundary spins of Ising lattices on a pseudosphere are thought
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(a) (b)

Figure 5. (a) �r-dependences of the critical exponents γ and µ, and (b) that of the critical
temperature Tc. The lines in the plots serve as a guide to eye. Each data point was extracted
by means of the finite-size scaling analysis for the system sizes 4 � rin � 8. The values of the
mean-field exponents γMF and µMF are indicated in plot (a).

to affect significantly the nature of the system, since the number of spins along the boundary
increases as fast as that of total spins of the lattice. Hence, in order to extract the bulk
critical exponents, we must try to remove the contribution of the boundary spins to the scaling
behaviour of the system. This is achieved by setting the disregarded layers �r = rout − rin

to be finite, i.e., by summing up only the spins within the interior rin layers when performing
MC simulations on the systems consisting of rout(> rin) layers. If �r is sufficiently large, the
ensemble of the spins involved in the interior rin layers may yield the critical exponents of the
bulk system that is free from the boundary contribution.

On the basis of the above argument, we have prepared the heptagonal lattices having
various values of rin and �r , and systematically employed the scaling analysis to them. It
then reveals how the critical exponents γ and µ and the critical temperature Tc depend on the
number of disregarded layers �r . The calculated results are given in figures 5(a) and (b); each
data point in the plots was extracted by means of the finite-size scaling analysis for the system
sizes 4 � rin � 8. (Hence, the maximum system size we have treated reaches rout = 12
which corresponds to N = 725 760.) We found that an increase in �r results in a monotonic
decrease in all quantities in question: γ, µ and Tc, which indicates the significant contribution
of the boundary spins to the scaling behaviour of the system.

The asymptotic behaviour of the curves of γ and µ for large �r provides estimations of
the bulk critical exponents. From figure 5(a), we see that the curve of µ shows somewhat
convergence to a particular value of µ ∼ 2 or less. Since this is close to the value of µ for
the two-dimensional planar Ising model3, µ2D = 2, it appears that the bulk system attains the
planar Ising universality class at around �r ∼ 4. However, the asymptotic behaviour of γ

is slightly different from that of µ; while the value of γ is equal to that of the planar system
γ2D = 1.75 at �r ∼ 3, it still continues to decrease almost linearly with �r and thus has no
tendency to converge to γ2D for large �r . Thereby, the bulk critical exponent γ will be smaller
than γ2d, which suggests that the heptagonal Ising lattice belongs to some other universality
class than of the planar Ising lattices.

In the context above, the asymptotic value µ ∼ 2 for large �r is not the exponent µ2D

but another specific exponent characterizing the intrinsic nature of the system. This point is
clarified by referring to the previous studies done by Rietman et al [21] and by Doyon and

3 The value µ2D = 2 is derived from the relation µ = νd (see (11)) and the exact solution ν = 1 for d = 2.
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Fonseca [22]. They both have stated that the Ising lattice model embedded on the pseudosphere
should yield the mean-field critical exponents when the boundary contribution may be omitted.
The mean-field nature of the system is attributed to the fact that an Ising lattice embedded
on a pseudosphere is effectively an infinite-dimensional lattice at large distance due to the
exponential growth of the total spins [43]. For an ordinary Ising lattice in d dimensions, the
number of spins along the boundary, Ns, is related to that of the total spins N as Ns ∝ N1−(1/d).
Hence, the peculiar relation Ns ∝ N that holds on negatively curved surfaces consequences
d = ∞. Accordingly, our heptagonal Ising lattices are expected to yield the mean-field critical
exponents γMF = 1 and µMF = 2, where µMF is determined by4 µMF = νMFdc as suggested
in [23]. Our numerical results given in figure 5(a) are in fact qualitatively consistent with the
above argument; that is, µ converges to µMF = 2 for �r � 4, and γ continues to decrease
until it yields γMF = 1. (To be precise, the asymptotic value of γ may take the value between
γ2D and γMF depending on the numerical conditions; this point will be discussed in detail in
section 6.)

5.3. Binder’s cumulant U4(T ,N)

We have also carried out an alternative estimation of Tc and µ in terms of the fourth-order
Binder’s cumulant U4(T ,N) defined by [36, 37, 44]

U4(T ,N) = 1 − 〈m4〉
3〈m2〉2

. (12)

For a given N, the cumulant U4(T ) decreases monotonically with an increase in T from
U4(0) = 2/3 to U4(∞) = 0. In the vicinity of Tc, the T-dependence of it can be approximated
by

U4(T ,N) = U(0) + U(1)

(
1 − T

Tc

)
N1/µ, (13)

where U(0) and U(1) are constants and are thus independent of T and N. Expression (13) is a
direct consequence of the assumption that the probability distribution of the order parameter
m should be Gaussian close to the transition [36]. From (13), it follows that

U4(Tc, N) = const and
dU4

dT

∣∣∣∣
T =Tc

∝ −N1/µ, (14)

which provides a complementary method to estimate Tc and µ.
Figures 6(a)–(c) present the numerical results for U4(T ,N) for several values of �r . In

each plot, we found a unique crossing point giving an estimate of the critical temperature as
Tc � 1.25, 1.22 and 1.20 for �r = 0, 2 and 4, respectively. These values of Tc are in fair
agreement with those obtained by the scaling analyses for the susceptibilities presented in
figure 5(b).

Figure 6(d) shows the N dependence of the derivative with negative sign −dU4/dT at
T = Tc for different �r . The magnitude of the derivative grows with a power law with
increasing N as expected from (14). The estimates of µ are µ ∼ 3.6, 7.7, 12.5 for �r = 0,
2, 4, respectively. It should be noted that these values of µ increase with �r . This clearly
contradicts the results of the scaling analyses on the susceptibility χ (see figure 5(a)), where
µ is found to be such a decreasing function of �r that yields the mean-field value µMF = 2
in the large �r limit. The discrepancy may be due to simply a finite-sized effect; or, it may

4 For the Ising model, the mean-field exponent νMF is 1/2, and the upper critical dimension dc is 4; thus we obtain
µMF = 2.
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(a) (b) (c) (d )

Figure 6. (a)–(c) Temperature dependences of the fourth-order Binder’s cumulant U4(T ,N) for
various values of �r . The size of the interior layers is varied from rin = 4 (square) to rin = 8
(solid circle). (d) The negative slope of the cumulant, −dU4/dT |T =Tc , for each value of �r . The
solid lines represent the power law (∝ N1/µ) with µ = 3.6, 7.7 and 12.5 from top to bottom.

indicate some intrinsic property of negatively curved surfaces with regard to the distribution of
the order parameter m, since the power-law relation (14) originates from the assumption of the
Gaussian distribution of m [36]. More thorough discussion about this point will be presented
elsewhere.

6. Discussions and concluding remarks

Our numerical analysis revealed that the critical exponents γ and µ of the heptagonal Ising
model defined on negatively curved surfaces assume values that deviate from those for the
planar Ising model. Most striking is that, when reducing the contribution of spins near the
boundary, both γ and µ exhibit a tendency to yield the mean-field exponents. This phenomenon
is attributed to the fact that the regular Ising lattices on negatively curved surfaces serve as an
effectively infinite-dimensional lattices due to the peculiarity of the intrinsic geometry.

The above statement immediately poses the following question: Does the negative
curvature of the underlying geometry alter the other four critical exponents? With regard
to the power-law behaviour of thermodynamic quantities, the planar Ising model is known
to possess four other critical exponents [4]: α = 0, β = 1/8, δ = 15, and η = 1/4, which
correspond to heat capacity, spontaneous magnetization, critical isotherm, and the two-point
correlation function, respectively. Our preliminary study [45] has suggested that the exponent
β for large �r also tends towards the mean-field exponent βMF = 1/2, whereas Tc estimated
there is slightly different from that in the present work. Detailed analyses on this issue and the
quantitative determination of the other exponent δ (and η, if it exists5) will be given in a future
study. Very recently, we have found that the dynamic critical exponent z in our heptagonal
Ising model also shift quantitatively from that for the planar Ising model [46].

It deserves comment that the finite curvature of the underlying geometry may produce
another type of effect wherein the spin variables at each site possess orientational degrees of
freedom. This is because the relative angle of interacting spins at neighbouring sites on a
curved surface is determined by a spatially-dependent metric tensor. Thus, the Hamiltonian

5 Rietman et al [21] have suggested that the two-point correlation function of the Ising lattices on a pseudosphere
shows an exponential decay instead of a power-law decay. If it is true, the critical exponent η can no longer be defined.
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of the system should be modified such that it is a function of the metric tensor. As a result,
the energetically preferable configurations of the vector spins differ from those in planar
systems [47–51], which implies that the critical behaviour of these vector-spin lattice models
is markedly influenced by a finite surface curvature.

Further noteworthy is, however, the fact that the geometric curvature continues to be
relevant to the critical behaviour of the system despite the omission of the vector property
of the interacting spin variables; this was demonstrated by our results. Evidently, the spin
variable of our model is set to be a scalar, and thus the Ising Hamiltonian given by (6) is
devoid of the metric factor. Nevertheless, the surface curvature is surely relevant to the Ising
model on curved surfaces since it enables us to construct peculiar lattice structures that cannot
be realized in a flat plane. This means that the surface curvature induces the alteration of the
global symmetry of the system even when the interacting entities do not exhibit any vector
property. Besides, in the vicinity of the critical point, the discreteness of the lattice becomes
irrelevant and the model can be considered to be a continuum surface with a constant curvature.
Therefore, the metric of the underlying geometry plays a crucial role in the scaling behaviour
of the Ising lattice model defined on the surface. In this context, the mean-field nature of the
critical exponents γ and µ is expected to be universal for all lattice structures other than the
heptagonal one; this point is being investigated.

We remark that it is also interesting to study the dependence of the values of the bulk
critical exponents on the interior lattice size rin we have introduced. Obviously, the condition
1 � rin � rout is desirable to determine the bulk properties of the lattice with accuracy. If
rin is not so large (compared to the curvature radius of the underlying surface), the system
can be regarded as an Ising lattice defined on a nearly flat surface. Thereby, the resultant
critical exponents will become comparable with those for the planar Ising lattice rather than
the true bulk critical exponents (i.e., the mean-field exponents). This implies that, by gradually
increasing the size of rin, the system goes through a crossover from the planar Ising class to
the mean-field class. We conjecture that this crossover phenomenon is observed in the shift
of the asymptotic value of γ deduced from the plot in figure 5(a); that is, when increasing the
size of r employed in the analyses, the asymptotic value of γ at �r � 1 will shift downward
from γ ∼ γ2D = 1.75 to γ ∼ γMF = 1. Accordingly, it is possible that the curve of γ plotted
in figure 5(a) converges to an intermediate value between γ2D and γMF under the present
numerical conditions.

In conclusion, we have investigated the critical behaviour of the Ising model defined on
a curved surface with a constant negative curvature. MC simulations and finite-size scaling
analyses were employed to compute the critical exponent γ and µ for the zero-field magnetic
susceptibility and correlation volume, respectively. The resulting values γ and µ show distinct
values from those for the planar Ising model, and exhibit a tendency to the mean-field exponents
γMF = 1 and µMF = 2 due to the peculiar intrinsic geometry of the negatively curved surface.
Also, we have revealed quantitatively how the boundary spins contribute to the determination
of γ, µ and Tc, and discussed the possibility of a crossover from the planar Ising class to the
mean-field Ising class. We hope that the generalization of our statistical model (with regard
to the lattice structure, dimensionality of the embedding space, distribution of interacting
strength, etc) would unveil a wide variety of interacting critical properties of the physical
systems assigned on general curved spaces.
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Appendix. The pseudosphere

The pseudosphere is defined as one sheet of the double-sheeted hyperboloid [19]

x2 + y2 − z2 = −1, (A.1)

possessing the Minkowskian metric ds2 = dx2 + dy2 − dz2. Since (A.1) specifies the locus
of points whose squared distance from the origin is equal to −1, it is called a pseudosphere
having the radius i = √−1 by analogy with the sphere.

While the above definition is rigorous, it is clumsy for computations since three
coordinates are used for only two degrees of freedom. This cumbrousness is removed by
using an alternative representation of the pseudosphere, called the Poincaré disc model [29].
Suppose that the upper hyperboloid sheet is projected onto the x–y plane using the following
mapping:

(x, y, z) →
(

x

1 + z
,

y

1 + z

)
. (A.2)

This transforms the upper sheet to a unit circle endowed with the metric

ds2 = w2(dx2 + dy2), w = 2

1 − x2 − y2
. (A.3)

The unit circle possessing the metric (A.3) is referred to as a Poincaré disc, and it serves as
a compact representation of the pseudosphere. The boundary of the disc corresponds to the
points at infinity of the hyperboloid. The Gaussian curvature κ on the disc is calculated using
the formula

κ = − 1

w2

(
∂2

∂x2
+

∂2

∂y2

)
ln w. (A.4)

From (A.3) and (A.4), we see that κ = −1 at arbitrary points on the disc. Thus it follows that
the pseudosphere is a curved surface with a constant negative curvature κ = −1.
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